Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.

Identifieur interne : 000654 ( Main/Exploration ); précédent : 000653; suivant : 000655

Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.

Auteurs : Huihui Zhang [Suède] ; Yatao Du ; Xu Zhang ; Jun Lu ; Arne Holmgren

Source :

RBID : pubmed:24295294

Descripteurs français

English descriptors

Abstract

AIMS

Mitochondrial thioredoxin (Trx) is critical for defense against oxidative stress-induced cell apoptosis. To date, mitochondrial thioredoxin reductase (TrxR) is the only known enzyme catalyzing Trx2 reduction in mitochondria. However, TrxR is sensitive to inactivation by exo/endogenous electrophiles, for example, 4-hydroxynonenal (HNE). In this study, we characterized the mitochondrial glutaredoxin 2 (Grx2) system as a backup for the mitochondrial TrxR. Meanwhile, as Grx2 is also present in the cytosol/nucleus of certain cancer cell lines, the reducing activity of Grx2 on Trx1 was also tested.

RESULTS

Glutathione alone could reduce oxidized Trx2, and the presence of physiological concentrations of Grx2 markedly increased the reaction rate. HeLa cells with Grx2 overexpression (particularly in the mitochondria) exhibited higher viabilities than the wild-type cells after treatment with TrxR inhibitors (Auranofin or HNE), whereas knockdown of Grx2 sensitized the cells to TrxR inhibitors. Accordingly, Grx2 overexpression in the mitochondria had protected Trx2 from oxidation by HNE treatment, whereas Grx2 knockdown had sensitized Trx2 to oxidation. On the other hand, Grx2 reduced Trx1 with similar activities as that of Trx2. Overexpression of Grx2 in the cytosol had protected Trx1 from oxidation, indicating a supportive role of Grx2 in the cytosolic redox balance of cancer cells.

INNOVATION

This work explores the reductase activity of Grx2 on Trx2/1, and demonstrates the physiological importance of the activity by using in vivo redox western blot assays.

CONCLUSION

Grx2 system could help to keep Trx2/1 reduced during an oxidative stress, thereby contributing to the anti-apoptotic signaling.


DOI: 10.1089/ars.2013.5499
PubMed: 24295294
PubMed Central: PMC4098818


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.</title>
<author>
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden .</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24295294</idno>
<idno type="pmid">24295294</idno>
<idno type="doi">10.1089/ars.2013.5499</idno>
<idno type="pmc">PMC4098818</idno>
<idno type="wicri:Area/Main/Corpus">000680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000680</idno>
<idno type="wicri:Area/Main/Curation">000680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000680</idno>
<idno type="wicri:Area/Main/Exploration">000680</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.</title>
<author>
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden .</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</analytic>
<series>
<title level="j">Antioxidants & redox signaling</title>
<idno type="eISSN">1557-7716</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehydes (pharmacology)</term>
<term>Apoptosis (drug effects)</term>
<term>Auranofin (pharmacology)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldéhydes (pharmacologie)</term>
<term>Apoptose (effets des médicaments et des substances chimiques)</term>
<term>Auranofine (pharmacologie)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Mitochondrial Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Aldehydes</term>
<term>Auranofin</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Apoptosis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Apoptose</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines mitochondriales</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Aldéhydes</term>
<term>Auranofine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dose-Response Relationship, Drug</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Relation dose-effet des médicaments</term>
<term>Relation structure-activité</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>Mitochondrial thioredoxin (Trx) is critical for defense against oxidative stress-induced cell apoptosis. To date, mitochondrial thioredoxin reductase (TrxR) is the only known enzyme catalyzing Trx2 reduction in mitochondria. However, TrxR is sensitive to inactivation by exo/endogenous electrophiles, for example, 4-hydroxynonenal (HNE). In this study, we characterized the mitochondrial glutaredoxin 2 (Grx2) system as a backup for the mitochondrial TrxR. Meanwhile, as Grx2 is also present in the cytosol/nucleus of certain cancer cell lines, the reducing activity of Grx2 on Trx1 was also tested.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Glutathione alone could reduce oxidized Trx2, and the presence of physiological concentrations of Grx2 markedly increased the reaction rate. HeLa cells with Grx2 overexpression (particularly in the mitochondria) exhibited higher viabilities than the wild-type cells after treatment with TrxR inhibitors (Auranofin or HNE), whereas knockdown of Grx2 sensitized the cells to TrxR inhibitors. Accordingly, Grx2 overexpression in the mitochondria had protected Trx2 from oxidation by HNE treatment, whereas Grx2 knockdown had sensitized Trx2 to oxidation. On the other hand, Grx2 reduced Trx1 with similar activities as that of Trx2. Overexpression of Grx2 in the cytosol had protected Trx1 from oxidation, indicating a supportive role of Grx2 in the cytosolic redox balance of cancer cells.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>INNOVATION</b>
</p>
<p>This work explores the reductase activity of Grx2 on Trx2/1, and demonstrates the physiological importance of the activity by using in vivo redox western blot assays.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Grx2 system could help to keep Trx2/1 reduced during an oxidative stress, thereby contributing to the anti-apoptotic signaling.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24295294</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7716</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants & redox signaling</Title>
<ISOAbbreviation>Antioxid Redox Signal</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.</ArticleTitle>
<Pagination>
<MedlinePgn>669-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1089/ars.2013.5499</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">Mitochondrial thioredoxin (Trx) is critical for defense against oxidative stress-induced cell apoptosis. To date, mitochondrial thioredoxin reductase (TrxR) is the only known enzyme catalyzing Trx2 reduction in mitochondria. However, TrxR is sensitive to inactivation by exo/endogenous electrophiles, for example, 4-hydroxynonenal (HNE). In this study, we characterized the mitochondrial glutaredoxin 2 (Grx2) system as a backup for the mitochondrial TrxR. Meanwhile, as Grx2 is also present in the cytosol/nucleus of certain cancer cell lines, the reducing activity of Grx2 on Trx1 was also tested.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Glutathione alone could reduce oxidized Trx2, and the presence of physiological concentrations of Grx2 markedly increased the reaction rate. HeLa cells with Grx2 overexpression (particularly in the mitochondria) exhibited higher viabilities than the wild-type cells after treatment with TrxR inhibitors (Auranofin or HNE), whereas knockdown of Grx2 sensitized the cells to TrxR inhibitors. Accordingly, Grx2 overexpression in the mitochondria had protected Trx2 from oxidation by HNE treatment, whereas Grx2 knockdown had sensitized Trx2 to oxidation. On the other hand, Grx2 reduced Trx1 with similar activities as that of Trx2. Overexpression of Grx2 in the cytosol had protected Trx1 from oxidation, indicating a supportive role of Grx2 in the cytosolic redox balance of cancer cells.</AbstractText>
<AbstractText Label="INNOVATION" NlmCategory="METHODS">This work explores the reductase activity of Grx2 on Trx2/1, and demonstrates the physiological importance of the activity by using in vivo redox western blot assays.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Grx2 system could help to keep Trx2/1 reduced during an oxidative stress, thereby contributing to the anti-apoptotic signaling.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Huihui</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden .</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Yatao</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antioxid Redox Signal</MedlineTA>
<NlmUniqueID>100888899</NlmUniqueID>
<ISSNLinking>1523-0864</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000447">Aldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516008">GLRX2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C467002">TXN2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3H04W2810V</RegistryNumber>
<NameOfSubstance UI="D001310">Auranofin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K1CVM13F96</RegistryNumber>
<NameOfSubstance UI="C027576">4-hydroxy-2-nonenal</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000447" MajorTopicYN="N">Aldehydes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001310" MajorTopicYN="N">Auranofin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24295294</ArticleId>
<ArticleId IdType="doi">10.1089/ars.2013.5499</ArticleId>
<ArticleId IdType="pmc">PMC4098818</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Dec 22;275(51):40180-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11013257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1990 Aug 1;188(2):359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2221388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Feb;23(3):916-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Sep 15;429(2):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(21):9414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Aug 11;20(15):3821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1508666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jan 31;272(5):2936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9006939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 1;17(9):2596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 15;38(12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Feb 15;128(6):1879-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 May 11;282(19):14428-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Sep 1;465(1):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 8;283(32):21890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1797(10):1705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2010 Nov 15;19(22):4529-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20829229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Dec 15;49(12):2010-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Mar 15;50(6):689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 23;286(38):33669-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21832082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):496-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21929356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Clin Pharmacol Toxicol. 2012 May;110(5):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Oct;1823(10):1767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22732297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39686-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Dec 1;53(11):2002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23010496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3317-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Sep;62:90-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23200807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000654 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000654 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24295294
   |texte=   Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24295294" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020